RISK AND RETURN

pr. P. D.

Dr. P.D.Das CIME, Bhubaneswar

CONCEPT OF RETURN

- Return: The gain (or loss) from an investment.
- Returns can be classified as:

COMPONENTS OF RETURN

YIELD

CAPITAL GAIN/ LOSS

(Periodic cash payments in the form of interest or dividends)

(Appreciation (or depreciation) in the price of the asset)

MEASUREMENT OF RETURN

Rate of return(k) =
$$\frac{D_t + (P_t - P_{t-1})}{P_{t-1}}$$

- where D_t is the cash flow receivable at time t P_t is the Price of the security at the end of the holding period and P_{t-1} is the Price of the security at the beginning of the holding period.
- D_t represents dividend payments in case of stocks and coupon payments in case of bonds or debentures.

PROBABILITY AND RATE OF RETURN

• Probability of an event gives the possibility of the occurrence of an event.

Expected rate of return $(\overline{k}) = \sum_{i=1}^{n} P_i k_i$

where P_i is the probability associated with the ith possible outcome

i=1

 k_i is the rate of return from the ith possible outcome

CONCEPT OF RISK

- Risk is the variability or dispersion between actual and estimated return.
- Higher the variability, greater the risk of the project.
- Relationship between return and risk can be explained by: Return = Risk-free rate + Risk Premium Higher the risk, greater the return.
- Risk-return Trade-off.

SOURCES OF RISK

- **INTEREST RATE RISK** : Variability in security's return due to change in level of interest rates.
- MARKET RISK: Variability in security's return due to fluctuations in the securities market.
- **INFLATION RISK**: Reduction in purchasing power due to rise in inflation.
- **BUSINESS RISK**: Risk of doing business in a particular industry.
- FINANCIAL RISK: Risk arising due to use of debt financing.
- **LIQUIDITY RISK**: Risk associated with the secondary market in which the security is traded.

MEASUREMENT OF RISK

1) Standard Deviation

- It is an absolute measure of dispersion.
- Indicates average distance from the mean return.
- It is computed as:

$$\sigma = \sqrt{\sum_{i=1}^{n} P_i (k_i - \overline{k})^2}$$

where k_i is the return from the ith outcome and P_i is the probability of the ith outcome.

Example: Comparison of risks of securities

- Compare the risk and return for X and Y securities.
- X Ltd. has the following probability distribution

Return (k _i)	6%	8%	10%	12%	14%
Probability	0.05	0.15	0.60	0.15	0.05
(P_i)			6000		

• Y Ltd. has the following probability distribution:

Return (k _i)	-100%	0%	15%	30%	130%
Probability	0.15	0.20	0.30	0.20	0.15
(P_i)					

Solution:

• Risk and return for X Lte

Return (k _i)	6%	8%	10%	12%	14%
Probability	0.05	0.15	0.60	0.15 0	.05
(P_i)				En	

 $\overline{k} = (0.05)(0.06) + (0.15)(0.08) + (0.60)(0.10) + (0.15)(0.12) + (0.05)(0.14)$ = 0.10 i.e 10%

$$\sigma = \sqrt{\sum_{i=1}^{n} P_i (k_i - \overline{k})^2}$$

 $\sigma = \sqrt{(0.05)(0.06-0.10)^2 + (0.15)(0.10-0.08)^2 + (0.60)(0.10-0.10)^2} + (0.15)(0.12-0.10)^2 + (0.05)(0.14-0.10)^2} = 1.7\%$

Risk and Return for Y Ltd.

Return (k _i)	-100%	0%	15%	30%	130%
Probability	0.15	0.20	0.30	0.20	0.15
(\mathbf{P}_{i})				ED	

 $\overline{k} = (0.15)(-1.00) + (0.20)(0.00) + (0.30)(0.15) + (0.20)(0.30) + (0.15)(1.3)$ =15.00%

$$\sigma = \sqrt{\sum_{i=1}^{n} P_i (k_i - \overline{k})^2}$$

 $\sigma = \sqrt{\frac{(0.15)(1.00 - 0.15)^2 + (0.20)(0.00 - 0.15)^2 + (0.30)(0.15 - 0.15)^2 + (0.20)(0.30 - 0.15)^2 + (0.15)(1.3 - 0.15)^2}{(0.20)(0.30 - 0.15)^2 + (0.15)(1.3 - 0.15)^2}} = 63.7\%$

INFERENCE

- In terms of returns Y Ltd. is better than X Ltd. but it is more risky.
- In terms of risk, X Ltd. is better than Y Ltd. but it offers less returns.

2) Coefficient of variation

- It is a relative measure of dispersion. ۲
- Computed as ratio of standard deviation to the mean.

- For the previous example: \bullet
- CV_x=0.17
 CV_y=4.25

CONCEPT OF A PORTFOLIO

- **Portfolio**: Group of assets held by an individual.
- **Purpose of Constructing a Portfolio:** To reduce risk with the help of diversification.
- Assumptions of Portfolio Theory:
 - Investors are risk-averse.
 - Security returns are normally distributed.
- Portfolio return

$$\boldsymbol{k}_{p} = \sum_{i=1}^{n} \boldsymbol{w}_{i} \boldsymbol{k}_{i}$$

Portfolio risk

$$\boldsymbol{\sigma}_{p} = \left[\sum_{i=1}^{n}\sum_{j=1}^{n}\boldsymbol{w}_{i}\boldsymbol{w}_{j}\boldsymbol{\rho}_{ij}\;\boldsymbol{\sigma}_{i}\;\boldsymbol{\sigma}_{j}\right]^{1/2}$$

DIVERSIFICATION

RISKS AFFECTING A PORTFOLIO

5,6

DIVERSIFIABLE RISK OR UNSYSTEMATIC RISK

NON-DIVERSIFIABLE OR SYSTEMATIC RISK

Risks arising from uncertainties that are unique to an individual security

Risks arising on account of economy-wide uncertainties

RISK REDUCTION THROUGH DIVERSIFICATION

Number of securities in the portfolio

BETA: A MEASURE OF THE SYSTEMATIC RISK

• Beta: Measures risk associated with a security relative to market portfolio.

$$\beta_{j} = \frac{\text{Cov}(k_{j}, k_{m})}{\text{Var}(k_{m})}$$

- $\beta > 1.0$ indicates above- average risk
- $\beta = 1.0$ indicates average risk.
- $\beta < 1.0$ indicates a less riskier asset than the market.

SHARPE'S SINGLE INDEX MODEL

- Establishes linear relationship between return on security and market return.
- Mathematically expressed as:

CAPITAL ASSET PRICING MODEL

- Establishes linear relationship between return on security and systematic risk
- Mathematically expressed as:

```
Security's Risk Premium

k_{j} = R_{f} + \beta_{j}(k_{m} - R_{f})
Risk-free rate

Market Risk

Premium
```

SECURITY MARKET LINE

PRICING IMPLICATIONS OF THE SML

END OF SESSION

for any query, please contact @ pddas1@gmail.com , # 9438485460